If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2+4p-1=0
a = 5; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·5·(-1)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6}{2*5}=\frac{-10}{10} =-1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6}{2*5}=\frac{2}{10} =1/5 $
| 2(5-y)=3(y-15) | | 2(4x+2)-4x-2=-4 | | -5y-2+3y=-12 | | -28-7=7m | | 3y-1=6 | | 18/x=4.5/8 | | 6=-2x+14x | | 0.77+0.11t=1.70t-0.29 | | -8a+8+12=36 | | 2p2+8p+8=0 | | -43=-8w-3 | | Y=12.5x+50=13x | | (p-5)=-p-3 | | 3(4x+2)−4x−2=−4 | | 99-x=50 | | -4p=10+2 | | 5y+2y-10=25 | | 5p2-9p-2=0 | | −2(−x+4)+4x−3=31 | | -m=m-11 | | x–13=3x–8 | | 0.5x=0.45x+2 | | 8r=13+51 | | -3-6z=9 | | 4p2-2p-1=0 | | 2(x+9)=12x | | 20(q+13)=320 | | 32=y(y+4) | | 8+(-200/x^2)=0 | | 7p=-22-41 | | -98=7p | | 3x-2(4x-20)=25 |