If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2-8p=0
a = 5; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·5·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*5}=\frac{0}{10} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*5}=\frac{16}{10} =1+3/5 $
| 2x+6+4=10 | | n-1=5n= | | 4+2p/6=2 | | 4x+456x=2x+528 | | 3x7=5+x12 | | 2y/3+6=2 | | 40+35x=43x | | 6m-3/7-2m+1/3=0 | | 3x+2=4x25 | | 4x+3=52x5 | | (2x+3)(4x-5)=-15 | | 5(b-2)+(b+3)=2(2b+1)-9 | | (x+1)^2=9 | | 5a/9=4 | | 53-3x=7-8x | | 18=4/3x | | (x+1)^2-9=0 | | (3x-5)2-81=0 | | -5/6z=-7/8 | | 4x5=62x+9 | | 1/x-(1/4)x=0 | | 4/x=5/(2x)+3 | | 6x=204x | | 8x+8=-3+2x | | x-(20/100)=15.2 | | 3x-5+6=14 | | 2x5=3x1 | | 3x+22=9x-7 | | 3(2-x)=x+10 | | 3,5x+955=0 | | 2(5−d)=2−4d | | 5r+10/15=4r-32/4 |