If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2=15
We move all terms to the left:
5p^2-(15)=0
a = 5; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·5·(-15)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*5}=\frac{0-10\sqrt{3}}{10} =-\frac{10\sqrt{3}}{10} =-\sqrt{3} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*5}=\frac{0+10\sqrt{3}}{10} =\frac{10\sqrt{3}}{10} =\sqrt{3} $
| 78=2x+(3x-6) | | 3(-5x+8)=-42-9x | | 11x-6=3x+50 | | 3x+8+2x=36-2x | | 11x-6=3x+59 | | 23z=759 | | x+24+2x-12+2x-12+x=360 | | 3x+4=10x-20 | | (2x-21)=(x-21) | | 11m=990 | | 15x-13=2x+13 | | n÷2+7=11 | | x+24=2x-12=2x-12=360 | | (2x+13)+(8x-43)=180 | | 3x+4+10x-20=180 | | 4x-7=63-6x | | 3x+36=15x=12 | | 816=3k | | 4x-7=63-6× | | 74=(9x+11) | | (3x+4)+(10x-20)=360 | | 9x-1.5=3 | | x+12=3x-6=3x-6 | | 3t+9=5t+7 | | 31c=527 | | 4x+1=37-2x | | 0.25y-12=-20 | | 4p-5+2p=13 | | 12x-25=5x+4 | | 2p-9=11+3p | | 8–5p=4p–1 | | 9x-1=x=9 |