5p=12/p

Simple and best practice solution for 5p=12/p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5p=12/p equation:



5p=12/p
We move all terms to the left:
5p-(12/p)=0
Domain of the equation: p)!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
5p-(+12/p)=0
We get rid of parentheses
5p-12/p=0
We multiply all the terms by the denominator
5p*p-12=0
Wy multiply elements
5p^2-12=0
a = 5; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·5·(-12)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*5}=\frac{0-4\sqrt{15}}{10} =-\frac{4\sqrt{15}}{10} =-\frac{2\sqrt{15}}{5} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*5}=\frac{0+4\sqrt{15}}{10} =\frac{4\sqrt{15}}{10} =\frac{2\sqrt{15}}{5} $

See similar equations:

| 8(u+3)+2u=34 | | 2=-7y+2(y-4) | | 45-1/2h=6 | | 63-5x=14+2x | | (9x+9)-(90x-9)=27 | | 9x+9-90x-9=27 | | t²+10+9=0 | | a^2−2a−8=0 | | a2+8a+12=0 | | 3(p-2)=2(1-p) | | x2-4x+13=0 | | x4-8x2+25=0 | | 2a²+a=11a | | -3(y+4)=2(y-1) | | 2(m-2)=14 | | 7/2x-3=2/3 | | 10x-5=-8x+31 | | 1+3i/3-I=1 | | 1+3i/3-I=0 | | (3r*1)*(r*2)=65 | | (1+x)^3.97=1.0533 | | 3^(2x)-9(3^x)+18=0 | | 3c−5=31 | | 30(4)+45(4)=z | | 4=0.3x-0.4x-5 | | (5x3+3)2=(5x3)2+(3)2 | | x/3=-1-(3) | | 11r=15=-2r^2 | | 186=6.2z | | -4=(2-5x)/4 | | -4+7=-3(2y+3) | | −11=−2x+3 |

Equations solver categories