5q=31/q=13

Simple and best practice solution for 5q=31/q=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5q=31/q=13 equation:



5q=31/q=13
We move all terms to the left:
5q-(31/q)=0
Domain of the equation: q)!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
5q-(+31/q)=0
We get rid of parentheses
5q-31/q=0
We multiply all the terms by the denominator
5q*q-31=0
Wy multiply elements
5q^2-31=0
a = 5; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·5·(-31)
Δ = 620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{620}=\sqrt{4*155}=\sqrt{4}*\sqrt{155}=2\sqrt{155}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{155}}{2*5}=\frac{0-2\sqrt{155}}{10} =-\frac{2\sqrt{155}}{10} =-\frac{\sqrt{155}}{5} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{155}}{2*5}=\frac{0+2\sqrt{155}}{10} =\frac{2\sqrt{155}}{10} =\frac{\sqrt{155}}{5} $

See similar equations:

| 0.5y=2.1 | | 6(-5x+9)=24 | | 3=t/2 | | -2(-6x+6)=120 | | -7.5x=60 | | 2x+4+124=180 | | 17=-17/10n | | 5{3a+1}3{a-7}=16+7a | | x/7=11/17 | | (19x-13)+65=90 | | 16-t=13 | | 4x-3x=3x | | 2.5=45;n=18 | | -7.25x=58 | | 15x-200=24 | | k-5/2=2 | | 7k-24=k | | 17=85;y=5 | | 2(q-5)=6 | | x+(x-335)+80+2x=2425 | | 7(1+1x)=-42 | | x+(x-335)+80=2425 | | 2.5u=10 | | -5x-9=7x+51 | | 3(3+x)+4x=15-12x+3 | | 22=w/3-14 | | -10m=4 | | 13x+3(-4+5)=15 | | 3x-35=x-21 | | -x+3=-61+7x | | -16(x)^2+96x+6=0 | | 7x+-16=2x+29 |

Equations solver categories