If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+26t-24=0
a = 5; b = 26; c = -24;
Δ = b2-4ac
Δ = 262-4·5·(-24)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-34}{2*5}=\frac{-60}{10} =-6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+34}{2*5}=\frac{8}{10} =4/5 $
| 6x+3x–x+9=33. | | 20×y=300,y=160 | | 5x–3=x–15 | | 8x+30=5x–6 | | 0=-2x(6-x) | | x3−5x2+3x+10=5 | | -2x(6-x)=0 | | 2x+1/4x-3/5=1/4x | | (x-1)(x+2)=(2x-3)(x+2) | | X+1/x-2/3=1/2 | | 3x+1/2-4x-1/3=1 | | X+2÷5=x-4÷2 | | 10=20-2n | | X-3/2=4x+3/3 | | 144x-81=0 | | -0.4n+3.6=12.8 | | 3x+7x-10=7+10x-17 | | 4x+7=9+5 | | 2,5x=1000 | | 2x–4=7x+10 | | -7,x-2,8=-6,6-9x | | -40x^2+20x+20=0 | | 1/3y−12=38 | | 64/8=n/128 | | 6x-12=5+(2x-9) | | (5,-3)m=4 | | 2x+3=4(x-2)+8 | | -11=5(m-3) | | 3x–4=7x+4 | | x^2−24⋅x+135=0. | | 12,2x=148.84 | | (72+x)/2=85 |