If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+7t=9
We move all terms to the left:
5t^2+7t-(9)=0
a = 5; b = 7; c = -9;
Δ = b2-4ac
Δ = 72-4·5·(-9)
Δ = 229
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{229}}{2*5}=\frac{-7-\sqrt{229}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{229}}{2*5}=\frac{-7+\sqrt{229}}{10} $
| 59x=11+4x | | //5(3x-0.5)+1/6=x/5+0.5 | | 2/3x-1/2=1 | | (x-1)/2+(x-2)7=x-4 | | 20-3x=9,5 | | -6+2y=9+3y | | x/8-x=2-x/4 | | (x-1)/3-(x-5)/2=1/6 | | (2x+5)/2-(3x-6)/4=1 | | 2x+5/2-3x-6/4=1 | | 8x-15=-23 | | -x-49=3(x-4)-5 | | x^2-3x-3=x-3 | | 4x-4=4(2x-4) | | -4=2(2x+2) | | -42=2(5x-2)-8 | | 3(2x+3)-3=-36 | | 5(4x+20)=130 | | 4⋅(x+1)=2x+1 | | 7x–9=22 | | 2310/570=d | | 2200+110=x | | 6p+8=4p+22 | | 2h2+5h=-4h2+2h | | 4(x-3)+2(2x+5)=30 | | 3x/10-2=-1 | | 9x+4=37 | | 3(x+1)+2(x+2)=22 | | 4x−13=7 | | 4s+25=133 | | 28b-36=20b+4 | | X^2+197x+9900=0 |