If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-12t-65=0
a = 5; b = -12; c = -65;
Δ = b2-4ac
Δ = -122-4·5·(-65)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-38}{2*5}=\frac{-26}{10} =-2+3/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+38}{2*5}=\frac{50}{10} =5 $
| -3-3c/5=8 | | -5=12-10x/9 | | v+2.15=8.44 | | -14=12t-7 | | v+4.5=9.17 | | -11-2m=4 | | 7t-10=9 | | x^2+4x-22=9 | | -26=12x-2 | | 2x=43/2 | | -1+12x=-109 | | 10h-17=53` | | (x+1)(x+2)(x+3)(x+3)-8=0 | | 13-5c/3=-11 | | x^2+8x-53=-5 | | -4=1-5y | | (22-x)+(17-x)+x+8=30 | | -11=7x-15 | | 103=2*3.14*r | | 13x-10=8x-10+50 | | 5-2z=-3 | | 2-(2x3)+3=7 | | 4x+1+33=180 | | x+35+97=180 | | 3(5v-2)=54 | | X+e^X=2.5 | | 5/3-2=x+6 | | -6z-18=-144 | | -6z-18=114 | | 1+3+5+99=y*y | | 9c-6c=2-5 | | 1+3+5+99y=y*y |