If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-15t-50=0
a = 5; b = -15; c = -50;
Δ = b2-4ac
Δ = -152-4·5·(-50)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-35}{2*5}=\frac{-20}{10} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+35}{2*5}=\frac{50}{10} =5 $
| 1/4(4x+12)=7 | | 4x-10=-3x | | 0=-0.5x^2+5x-4.5 | | N=3V^2p | | 48.5=9x+8 | | -02x=2.2 | | -3(2+3x)=10-4(8x+3) | | -10x-22=8x+12 | | 4b2-5=2 | | 2×-8+3x+2=4x+10+3x-6 | | 1.4x+28=-8.4 | | 7/2x+1/2x=4x+28/2+7/2x | | 1.5x-4.5=-12 | | -8/5=1/3w-5/2 | | 7c2=100 | | 4/5(x)+5=-3 | | (1/4x)+(2/4x)=180 | | 9+2y-4=9y+13-6y | | 53=8+9m2 | | u/6=8/17 | | 8x-(10x-2)=2x+5 | | 4-k2=4 | | 5/x=13/17 | | –5(–5+3x)=84 | | 1+(2x-3)=16 | | 12x+50=20+15x | | -6p-(21)=3p-12 | | 14-x2=17 | | 5y+63=14y | | 15x+12-3x=2x-84+x | | 18x-2=78+28x | | 61-3n2=-14 |