If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-8t-50=0
a = 5; b = -8; c = -50;
Δ = b2-4ac
Δ = -82-4·5·(-50)
Δ = 1064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1064}=\sqrt{4*266}=\sqrt{4}*\sqrt{266}=2\sqrt{266}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{266}}{2*5}=\frac{8-2\sqrt{266}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{266}}{2*5}=\frac{8+2\sqrt{266}}{10} $
| 17=j/12 | | 0.5x-0.3(0.2+5)=0.4x-3 | | 6(4+3v)=168 | | 8x^2=-576 | | 5(x-4)-19x=-7(2x+1) | | 10v=9v+6 | | 7x+8-4=44 | | 560-x=539.1 | | 3x+22=2x+35 | | 9x-6=11x-14 | | 4-3x=10-6x | | 1.032=6(x+18) | | -7x=-x+12 | | -2x+2=-4x-8 | | p(x)=140x+200 | | x+4=2x-(-10) | | 27-7x=2x | | 12x-1=22x+4 | | 3z-6=66=180 | | 13x-2=-2+25x | | 6x=13x-8 | | -1+37x=73x-1 | | 10u=100.000.000 | | 17.5+30=x | | 19.25+15=x | | 3w=28-w | | 3c-5=1-0 | | 56x+274=2189 | | x+57+64+68=180 | | 108=17x-11 | | 6t-2.50=96 | | (-7.75z+2)=0 |