If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u(2u+5)=0
We multiply parentheses
10u^2+25u=0
a = 10; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·10·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*10}=\frac{-50}{20} =-2+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*10}=\frac{0}{20} =0 $
| −z4=12 | | 18t+2t-6t+3t-16t=13 | | 40=−13(9x+30)+2 | | 4(3-x)+6x=x+10-x | | 4x+7=11x+2 | | 14j-14j+j=10 | | g2+ 5=7 | | 4(3-x)+6x=x+12-x | | 3/2t-4=2/3t-5/6 | | -7w+3w+13w-13w=12 | | 3x-5=2(2x+2) | | 5s+2s-5s-s+s=16 | | 3x+9+9x+3=x | | 8t+2t-7t+3t=18 | | 2/21=h/15 | | 3x+11=7x+19 | | -3k+6=-2(k-4)-(k+2) | | 3(2r-5)=3r-6 | | -7/6k+1=5/3+3/2k | | (x-7)^2=12 | | 9x+7=x-3 | | -7/6k+1=5/3+32k | | 13q-7q-4q=14 | | 110=19x=4 | | n−100-2=0 | | −34=12m | | -4m+4=-3m-6 | | 3z+3z-3z-2z=15 | | -6(5+5x)=3+3x | | r/2+16=23 | | 2(3x-10)=10 | | 0.8x+0.2=12 |