5u+3/4u=54-u

Simple and best practice solution for 5u+3/4u=54-u equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5u+3/4u=54-u equation:



5u+3/4u=54-u
We move all terms to the left:
5u+3/4u-(54-u)=0
Domain of the equation: 4u!=0
u!=0/4
u!=0
u∈R
We add all the numbers together, and all the variables
5u+3/4u-(-1u+54)=0
We get rid of parentheses
5u+3/4u+1u-54=0
We multiply all the terms by the denominator
5u*4u+1u*4u-54*4u+3=0
Wy multiply elements
20u^2+4u^2-216u+3=0
We add all the numbers together, and all the variables
24u^2-216u+3=0
a = 24; b = -216; c = +3;
Δ = b2-4ac
Δ = -2162-4·24·3
Δ = 46368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{46368}=\sqrt{144*322}=\sqrt{144}*\sqrt{322}=12\sqrt{322}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-216)-12\sqrt{322}}{2*24}=\frac{216-12\sqrt{322}}{48} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-216)+12\sqrt{322}}{2*24}=\frac{216+12\sqrt{322}}{48} $

See similar equations:

| 2a+-8a=8 | | 93+12n=12n-3+96 | | 25-9x=-25+11x | | 34-(3c=+4)=2(c+6)+c | | 2x-3=5x+30 | | x/2+16=356 | | 12x-15=-7x | | 24=3(c-5) | | x^2+(x+7)^2=13^2 | | 4(2n+2)=6(7n+8)+1 | | 5s^2+2s-4=0 | | 2r=r+8 | | −27=3(x−2) | | 13=3+30t-5t^2 | | -5(7x-6)+4=-35x+34 | | 5x^2+4x=135 | | 3x^2-5x=10x | | -3(x-1)+8(x-3)=6x+6-5x | | −20=2(x−9) | | 30=5(1-x) | | ​−2(x+0.25)+1=5 | | p-1=5p+3p=8 | | 4(7p+3)=-7p-23 | | (x=4)(x^2-x+3)=0 | | ​−2(x+0.5)+1=5 | | -2(n+4)+6=-4 | | 50=5(x-1) | | 3x+5/4=9 | | 5x+4=8x+10 | | -7(2n+8)-1=-127 | | 5s+2s-4=0 | | 3(x+6)=−12 |

Equations solver categories