If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2-25=0
a = 5; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·5·(-25)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*5}=\frac{0-10\sqrt{5}}{10} =-\frac{10\sqrt{5}}{10} =-\sqrt{5} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*5}=\frac{0+10\sqrt{5}}{10} =\frac{10\sqrt{5}}{10} =\sqrt{5} $
| 3+4x=-x+13 | | x=x-11(x3) | | x/6=6/24 | | x=x-11+(3x) | | -1/3=-3/7x-1/2 | | x=x-11(3x) | | 10y+8y=5 | | -4y+12=-2(4y+8) | | x=(3-x)11(3x) | | 4x+85=7.75x | | 16x+16=33 | | -5(-4v+3)-6v=6(v-3)-1 | | x=11(x3) | | 19.5=130*0.03*t | | -9(u-5)=8u-40 | | 0.3-0.5x=0.2x-0.1 | | (x+15)/3=9 | | 4=0.3x-0.4x-3 | | -24=6(v-3)-8v | | 1/5x-1/6x-1/30x=5 | | -4n+8=4-3n | | 5x^2-4=8x^2-7 | | y-7y+12=0 | | (x+15)3=9 | | s/16=-1 | | 20x-50+21x=10 | | 2=0.1x-0.2x-5 | | 5x-10+-9=-7-(-7x) | | -24+h=-3 | | 3.3k-8.44=2.9k+6.2 | | 1/2^m=1/3 | | 9-15x-6=6 |