If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2+13w+7=0
a = 5; b = 13; c = +7;
Δ = b2-4ac
Δ = 132-4·5·7
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{29}}{2*5}=\frac{-13-\sqrt{29}}{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{29}}{2*5}=\frac{-13+\sqrt{29}}{10} $
| x^2+(x+6)^2=20^2 | | 5^2x-3+5=23 | | 4.27=1.083+p | | x^2+(x+6)^2`=20^2 | | x^2+(x+6)^2=400 | | 4+3x=5x-18 | | 75-(4x+16)=4(x+8)+x | | 2y^+1=y+5 | | 8x-7(3x-1)=4x-3(5x-3) | | 3x-34=2x+16 | | 22x-7-18x+4=20x-7-16x+16 | | 7/8x-5/8=10 | | 2(11-12x)=-4(1-6x) | | 465=15n | | (x*14)-155=(x*14)-5 | | T=(P*V)/(n*R) | | 24^2-29x+7=20x^2-27x+9 | | 52+x=45 | | y=2/7.4+3 | | 14+4x=-16+19x | | -42=3y | | x/5-9=11 | | 5(42x-37)=26(-7-6x) | | (3x+14)+(4x-9)=90 | | 4=12x*40 | | x+10=144-4x | | 3=58+5c | | 8x-4+5=3+2(x+1) | | y/10=21 | | R=2t^2+87t+90 | | 14=b3 | | 8=r−14. |