If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-6=0
a = 5; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·5·(-6)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*5}=\frac{0-2\sqrt{30}}{10} =-\frac{2\sqrt{30}}{10} =-\frac{\sqrt{30}}{5} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*5}=\frac{0+2\sqrt{30}}{10} =\frac{2\sqrt{30}}{10} =\frac{\sqrt{30}}{5} $
| 3x*3x-50=2x*2x+75 | | X/3=2+x/4 | | 5-3(2-x)=4(2x+1) | | 3x•3x-50=-2x•2x+75 | | 3x2-50=-2x2+75 | | 8×-5y=40 | | -4x+2x=-3x+11 | | 4t=60-3t | | -4+2x=-3x+11 | | 7n-3=n+3 | | X^2x-9=0 | | X*2+7x=-12 | | (2x+3)(4x-8)=(7x+1)(4x-8) | | 10x=45−5x | | 100=y+42 | | -4=c/4 | | 7a-2(a-2)=-16 | | 3x+3^x=342 | | 3x+3^x=341 | | (x-47)(x+11)=0 | | X*2-20=x | | 12÷3x=7 | | 14(x-0,5)=6x-35 | | n*2-4n+4=4 | | 8x=6x+28 | | 3^x+2+5*3^x-4*3^x-1=342 | | 4n^2=10 | | X*2=-8+6x | | X+(x+2)+(x+3)=-78 | | (x-1)^4=2 | | F(x)=6x`+3 | | 2(6b+5)=2+4b |