If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-8w=0
a = 5; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·5·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*5}=\frac{0}{10} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*5}=\frac{16}{10} =1+3/5 $
| -5f=30-f | | 0=-16x^2+32x+8 | | y=0.2+100 | | f(0)=3(0)+6 | | 15b+402=447 | | x+90+53+37+139=360 | | 5x+(9•2)=13 | | 3d+4-9d=-12 | | 75+10x-5=3x+2 | | 9.25x+5=20.5x+14 | | 1/2x-7.5=-5 | | 2x²+10x=5 | | 7+0.2x=0.3x | | x+52+38+220=360 | | 7+1/5x=3/10x | | 4×3=x+32x-4 | | 4*3=q | | 5(3y-14)-2y=-18 | | 2x+108=360 | | 9x=2x=56 | | 5y+6=54 | | 75+10-5=3x+2 | | 3x-4(2x-12)=23 | | 5^(2x-1)=35 | | 3x2–x–10=0 | | 35=5.5c-7c+5 | | -20-15=-5(4d+3) | | 9x-7+7x+5+112+90=360 | | F(x)=55x+450 | | 72+68+x=180 | | 75+5y=180 | | -2x+5=20x |