If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(2)+20=180
We move all terms to the left:
5x(2)+20-(180)=0
We add all the numbers together, and all the variables
5x^2-160=0
a = 5; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·5·(-160)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*5}=\frac{0-40\sqrt{2}}{10} =-\frac{40\sqrt{2}}{10} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*5}=\frac{0+40\sqrt{2}}{10} =\frac{40\sqrt{2}}{10} =4\sqrt{2} $
| 2y-y+5=15 | | 3p+10=31 | | X+x+x+6=22 | | 7^{2x+3}=5 | | -5x(2)=-50 | | 6h-6-18h=-10h+4 | | 38+p=128 | | p^2+14p-54=-3 | | 5^(3x+1)=25^(x+1) | | 18u-15u=15 | | x(2)-4=76 | | 13v-16=14v | | 5x–7(x+1)=5 | | -3g+10=-2 | | 5(x-2)+4=3(x+1) | | 27+63x=0 | | x(2)=27 | | -(3x-3)+9(x+1)=12 | | 12=3(h-14) | | 3(h+9)-8=-5 | | -4(x+6)-(1+2x)=5 | | -14x-12=-128 | | x=14x-10 | | v-1=17 | | 5t-5=22-7 | | 8+(-5)=0.25(8x-4) | | 6+h/2=0 | | 49x(2)+3=7 | | 10w-4w-5w=14 | | 4n−2=5 | | 2(n-5)=60 | | 8x-2x-6x=-61.6 |