If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(2-x)+7x=-3(x+5)
We move all terms to the left:
5x(2-x)+7x-(-3(x+5))=0
We add all the numbers together, and all the variables
5x(-1x+2)+7x-(-3(x+5))=0
We add all the numbers together, and all the variables
7x+5x(-1x+2)-(-3(x+5))=0
We multiply parentheses
-5x^2+7x+10x-(-3(x+5))=0
We calculate terms in parentheses: -(-3(x+5)), so:We add all the numbers together, and all the variables
-3(x+5)
We multiply parentheses
-3x-15
Back to the equation:
-(-3x-15)
-5x^2+17x-(-3x-15)=0
We get rid of parentheses
-5x^2+17x+3x+15=0
We add all the numbers together, and all the variables
-5x^2+20x+15=0
a = -5; b = 20; c = +15;
Δ = b2-4ac
Δ = 202-4·(-5)·15
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{7}}{2*-5}=\frac{-20-10\sqrt{7}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{7}}{2*-5}=\frac{-20+10\sqrt{7}}{-10} $
| 800=350+.06x | | -39+7x=6(x-8)+3 | | 10k-4k-9=9+3k | | 9=27/z | | 10k−4k−9=9+3k | | 9-3v=1-4v | | -10-1s=9s | | 6c+4c=-1/2 | | 5k+6=-4+10k | | 7(6+6)=-7(n-6) | | -8f-2=-9f | | y/12=7/17 | | -8f−2=-9f | | 32x=30x-1 | | -5b=-8b+9 | | 6-6r=1-7r | | 175+.50x=280 | | -67=10-7n | | 4s=3s+10 | | 162.7776=3.14r^2 | | -8m-(-6m+7)=-5(m+5) | | 3y+8=2y+6 | | F(2x)=6x-9 | | 2x-4+8x=8x+8 | | 4x−2x=4 | | 40x+2=38 | | 11(x-2)/(x-3)+5/x=-5/x(x-3) | | 6=3g=9 | | 6+3×x=42 | | 46x−1=58x | | 40x-2=38 | | 2x+3=5x+3/4 |