If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(2x+3)=0
We multiply parentheses
10x^2+15x=0
a = 10; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·10·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*10}=\frac{-30}{20} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*10}=\frac{0}{20} =0 $
| -3+4k=17 | | 5x-6=10-3× | | m-2=-13 | | 2x2−12x+18=0 | | -3-13.8=-8x-(6x+1) | | 5x+6/3x-6=4/3 | | 90=10(n+1) | | 5x/2-5=-3 | | 4x^2+42x+54=0 | | -3-13.8=-8x(6x+1) | | 27=81x^-1 | | 2x/4+6=5 | | 400=400-16t^2 | | 27=81x–1 | | 5-3(f+2)=8 | | 1y+2y=-6 | | (x+5)+5=10 | | (p-12)3/2=64 | | 2x^2+20x=78 | | 7(x+9)=119 | | 9=5/2x-1 | | 3(d+11)=84 | | 3m=(m+5) | | Y=x^2+16x-3 | | 12+5r=-78 | | 5x/7-3=2 | | (x+1)^2-4=-3 | | 25z^-36=0 | | 3(x-2)+3(x-1)=28 | | (x+1)^2-4=3 | | 4x-(50+2x)=0 | | 17x-16+9x=36 |