5x(2x+4)=10x-3+24

Simple and best practice solution for 5x(2x+4)=10x-3+24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(2x+4)=10x-3+24 equation:



5x(2x+4)=10x-3+24
We move all terms to the left:
5x(2x+4)-(10x-3+24)=0
We add all the numbers together, and all the variables
5x(2x+4)-(10x+21)=0
We multiply parentheses
10x^2+20x-(10x+21)=0
We get rid of parentheses
10x^2+20x-10x-21=0
We add all the numbers together, and all the variables
10x^2+10x-21=0
a = 10; b = 10; c = -21;
Δ = b2-4ac
Δ = 102-4·10·(-21)
Δ = 940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{940}=\sqrt{4*235}=\sqrt{4}*\sqrt{235}=2\sqrt{235}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{235}}{2*10}=\frac{-10-2\sqrt{235}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{235}}{2*10}=\frac{-10+2\sqrt{235}}{20} $

See similar equations:

| 5(x+4)=8(3x-7) | | –9j=–8j−10 | | -8x=14=-2(4x-7) | | X2+9x-12=0 | | 3(x+4)+11=8x-5(-3) | | x−10/2=−7 | | 1/2(14z+14)-3=6(z-7) | | 2x+26+3+2x+34=15 | | 5x−9=7x+6−2x | | 2(x2-4)=24 | | 15-2(x+3)=5x+10 | | 4+2(4x-6)=5-3(2x+1) | | 12x+18=15x+18 | | X+3/8=1/4+x-7/5 | | 2x+27+6=x+23 | | 8x-5=12x+5 | | n/4-9=-11 | | 3x-9x-16=-6x+5-16 | | -2+-4j=14 | | 6(x+5)=8x+9-2x+21 | | X+14+x+19=19 | | 2x+61=97-7x | | 0.25=a+0.10 | | 6x+4=-8+3x+24 | | 5(x+5)=1+5x | | 2x5=x3+5 | | 99=2q-27 | | 5(a-5)=10a | | 9x+51=3x+63 | | 99=2q—27 | | 5(36+y)=11y | | 17/10x+6/5=8/5x |

Equations solver categories