5x(2x-3)-4x+9=8-x

Simple and best practice solution for 5x(2x-3)-4x+9=8-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(2x-3)-4x+9=8-x equation:



5x(2x-3)-4x+9=8-x
We move all terms to the left:
5x(2x-3)-4x+9-(8-x)=0
We add all the numbers together, and all the variables
5x(2x-3)-4x-(-1x+8)+9=0
We add all the numbers together, and all the variables
-4x+5x(2x-3)-(-1x+8)+9=0
We multiply parentheses
10x^2-4x-15x-(-1x+8)+9=0
We get rid of parentheses
10x^2-4x-15x+1x-8+9=0
We add all the numbers together, and all the variables
10x^2-18x+1=0
a = 10; b = -18; c = +1;
Δ = b2-4ac
Δ = -182-4·10·1
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{71}}{2*10}=\frac{18-2\sqrt{71}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{71}}{2*10}=\frac{18+2\sqrt{71}}{20} $

See similar equations:

| 20000=15000x1.0275 | | 4x-16=4x+8 | | 2n-6=3n+4 | | 8=9/z | | 2g+10+8=30 | | 64/15=100/x | | x+1/(x-2)=0 | | 55x=64 | | (X+1)(x+2)=1320 | | 48/8=2x | | 3a–(4+2a)= | | 36+36=3x+18 | | 82-26=2x4x | | 63/9=1x | | (X-2)(x+9)=2x+18 | | 0x1+0x2+0x3+0x4+0x5=0 | | 5x+3=7x–4. | | T=-15t+9 | | X/6-x/5+x/3=x/15+7 | | 7.2x=3.4 | | X^2+3x-2.26=0/ | | n+n+2+n+4=408 | | n+n+1+n+2=159 | | n+n+2+n+4=174 | | 24-d=10d-9 | | 3^x+3^{x-2}+3^{x+2}=91 | | 11x-7=-39+7x | | 2x+1.20*3x=208 | | 33x-42x+21/2=-14x | | 2x-3(4x+2)=10x-(-16x=+40) | | 5x*5x+7=22 | | 5x^2–4x–3=0 |

Equations solver categories