If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(2x-9)=0
We multiply parentheses
10x^2-45x=0
a = 10; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·10·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*10}=\frac{0}{20} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*10}=\frac{90}{20} =4+1/2 $
| 1/3=n-31/2 | | 3(4x-5)=6x+45 | | 5/8x=65/24 | | 24+x=18+3x | | -15Y+45-31y=-3 | | Y=1.6x+0 | | 3-4x-3x=-6 | | j/4+13=17 | | 6x+24x-8=6(5x5 | | .2(3x+2)=2x+28 | | y+1.2=3.3 | | (-54)=(-6n) | | 14y+21=7 | | 4x-2(x-4)=-5+4+1 | | 10f+3=23=6f | | x=-90/2-16 | | ((5x)^7)=100 | | x-5(x-3)-5=-42 | | 7-6n=29 | | 13x135=134 | | 3x+x4=9x-5x+4 | | -7y=-3(-3) | | 100=(.8x)+40 | | 24+n=39 | | 132=x+136 | | X2+24x+30=0 | | c=76*6 | | -15y+4531y=-3 | | Y=14-0.5c | | 45x+1635x-49=42(40x+60) | | ½(8x+14)=12 | | 9m+7=30 |