If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(3x+15)=0
We multiply parentheses
15x^2+75x=0
a = 15; b = 75; c = 0;
Δ = b2-4ac
Δ = 752-4·15·0
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-75}{2*15}=\frac{-150}{30} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+75}{2*15}=\frac{0}{30} =0 $
| 17=3x-15 | | 1.2x^2-32x+960=0 | | 0.8x^2+32X-960=0 | | 0.17x=1 | | 5^(2x-1)=(1/25) | | 2k×k=0 | | 3.14*x^2=37 | | J(x)=2x+5 | | 3-5z=11-2z | | 9m-7=3m+41 | | (56+)t7=9 | | 3/y+5=2/y+1 | | 2x²+10x+10,5=0 | | 2x³+-1x²+-25x+30=0 | | f/5-6=18 | | -2x+38=7x+32 | | 3(2x+1)=2(1-5)+6x+11 | | 4n^2-55=-9n | | 4(2x+2)=5x-10 | | -x+13=4(4x-1) | | 3(t-7)-5t=15 | | x-16=2(x-1)-3 | | 3(t-7)=5t=15 | | x-24=2(3x+4)-2 | | x=5-5*5+5 | | 2.x2-4x+2=0 | | 9x2+4x+5=0 | | 4(2x-28)=144 | | 5x-10=4x-3x | | -4a-23-9a=-53 | | 4(q+43)=-8(-q-15) | | (x)-128/3=0 |