5x(3x-3)=30x+10(3x+6)

Simple and best practice solution for 5x(3x-3)=30x+10(3x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(3x-3)=30x+10(3x+6) equation:



5x(3x-3)=30x+10(3x+6)
We move all terms to the left:
5x(3x-3)-(30x+10(3x+6))=0
We multiply parentheses
15x^2-15x-(30x+10(3x+6))=0
We calculate terms in parentheses: -(30x+10(3x+6)), so:
30x+10(3x+6)
We multiply parentheses
30x+30x+60
We add all the numbers together, and all the variables
60x+60
Back to the equation:
-(60x+60)
We get rid of parentheses
15x^2-15x-60x-60=0
We add all the numbers together, and all the variables
15x^2-75x-60=0
a = 15; b = -75; c = -60;
Δ = b2-4ac
Δ = -752-4·15·(-60)
Δ = 9225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9225}=\sqrt{225*41}=\sqrt{225}*\sqrt{41}=15\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-15\sqrt{41}}{2*15}=\frac{75-15\sqrt{41}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+15\sqrt{41}}{2*15}=\frac{75+15\sqrt{41}}{30} $

See similar equations:

| 7(a-3)=7 | | -95-4x=40-x | | -a/3-a=9 | | x²-7x-6=x(x-6)-10 | | 5x-7=3x-71 | | -1.3=0.3y+2.3 | | 5x(3x-3)=15x²+10(3x+6) | | -85-15x=-12x+47 | | 1296-0.36x^2=0 | | 72=6(j+6) | | -85-15x=-12+47 | | 2a/5-3a/2=4a/10 | | 14v-7v=63 | | 4x^2-65=16x | | 6x+6=4x+45 | | t^2-4t=-1 | | 3a-6/4=5a+3/2 | | 6x(2x-3)=4x(3x-4)-4 | | X-4=2.5(x+3.5) | | -x-66=34-6x | | w=28-3w | | 6a+2=-3a+5 | | 3x+2x+x+1=180 | | -1/3b=-15 | | 42=3x-13 | | 6+8v=10v | | -10-6x=-104 | | 3x/5-2=×+1/3 | | -2+k=16 | | 9x2-3/4x=0 | | 8x-90=14x+30 | | x+(2x-10)+(3x-50)=180 |

Equations solver categories