If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(4x+9)=0
We multiply parentheses
20x^2+45x=0
a = 20; b = 45; c = 0;
Δ = b2-4ac
Δ = 452-4·20·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-45}{2*20}=\frac{-90}{40} =-2+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+45}{2*20}=\frac{0}{40} =0 $
| 7-5x=-2x-5 | | 4x12x=80 | | m2+6/5=11 | | k=0.04k^2 | | 0.2k=0.5k^2 | | 4(2x-5)=2(3x+7) | | 3x^2+13x+20=0 | | 30/d=60 | | 2/4(2x+5)=6 | | 2x-x+1-4=-3+x | | 4x+2(97)=5(97)-2x | | 1/4x^2+3x-5=0 | | 10/x=13/17 | | 12.3^2x+13.3^x-7=0 | | b/(-1/4)b=21 | | 60-2x+81+x=180 | | 12.3^(2x)+13.3^x-7=0 | | 20.04+x=14.3 | | 1800=n+2*180 | | 140n=(2-n)*180 | | 140=(2-n)*180 | | x=x/12+30 | | y=0.08*7496+7400 | | 600=0.08x+7400 | | 2x^2+1=3x^2+5 | | 6x^2+4=5x^2+9 | | 4x-11+x-9=90 | | X-2(13+7x)=11 | | 2(10x-4)=3(2x+16) | | x*(-12+18)=40 | | 6m+100=40 | | X^2-6x-9+(x-3)(x+4)=0 |