5x(6+3x)=17-2x

Simple and best practice solution for 5x(6+3x)=17-2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(6+3x)=17-2x equation:


Simplifying
5x(6 + 3x) = 17 + -2x
(6 * 5x + 3x * 5x) = 17 + -2x
(30x + 15x2) = 17 + -2x

Solving
30x + 15x2 = 17 + -2x

Solving for variable 'x'.

Reorder the terms:
-17 + 30x + 2x + 15x2 = 17 + -2x + -17 + 2x

Combine like terms: 30x + 2x = 32x
-17 + 32x + 15x2 = 17 + -2x + -17 + 2x

Reorder the terms:
-17 + 32x + 15x2 = 17 + -17 + -2x + 2x

Combine like terms: 17 + -17 = 0
-17 + 32x + 15x2 = 0 + -2x + 2x
-17 + 32x + 15x2 = -2x + 2x

Combine like terms: -2x + 2x = 0
-17 + 32x + 15x2 = 0

Begin completing the square.  Divide all terms by
15 the coefficient of the squared term: 

Divide each side by '15'.
-1.133333333 + 2.133333333x + x2 = 0

Move the constant term to the right:

Add '1.133333333' to each side of the equation.
-1.133333333 + 2.133333333x + 1.133333333 + x2 = 0 + 1.133333333

Reorder the terms:
-1.133333333 + 1.133333333 + 2.133333333x + x2 = 0 + 1.133333333

Combine like terms: -1.133333333 + 1.133333333 = 0.000000000
0.000000000 + 2.133333333x + x2 = 0 + 1.133333333
2.133333333x + x2 = 0 + 1.133333333

Combine like terms: 0 + 1.133333333 = 1.133333333
2.133333333x + x2 = 1.133333333

The x term is 2.133333333x.  Take half its coefficient (1.066666667).
Square it (1.137777778) and add it to both sides.

Add '1.137777778' to each side of the equation.
2.133333333x + 1.137777778 + x2 = 1.133333333 + 1.137777778

Reorder the terms:
1.137777778 + 2.133333333x + x2 = 1.133333333 + 1.137777778

Combine like terms: 1.133333333 + 1.137777778 = 2.271111111
1.137777778 + 2.133333333x + x2 = 2.271111111

Factor a perfect square on the left side:
(x + 1.066666667)(x + 1.066666667) = 2.271111111

Calculate the square root of the right side: 1.507020607

Break this problem into two subproblems by setting 
(x + 1.066666667) equal to 1.507020607 and -1.507020607.

Subproblem 1

x + 1.066666667 = 1.507020607 Simplifying x + 1.066666667 = 1.507020607 Reorder the terms: 1.066666667 + x = 1.507020607 Solving 1.066666667 + x = 1.507020607 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.066666667' to each side of the equation. 1.066666667 + -1.066666667 + x = 1.507020607 + -1.066666667 Combine like terms: 1.066666667 + -1.066666667 = 0.000000000 0.000000000 + x = 1.507020607 + -1.066666667 x = 1.507020607 + -1.066666667 Combine like terms: 1.507020607 + -1.066666667 = 0.44035394 x = 0.44035394 Simplifying x = 0.44035394

Subproblem 2

x + 1.066666667 = -1.507020607 Simplifying x + 1.066666667 = -1.507020607 Reorder the terms: 1.066666667 + x = -1.507020607 Solving 1.066666667 + x = -1.507020607 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.066666667' to each side of the equation. 1.066666667 + -1.066666667 + x = -1.507020607 + -1.066666667 Combine like terms: 1.066666667 + -1.066666667 = 0.000000000 0.000000000 + x = -1.507020607 + -1.066666667 x = -1.507020607 + -1.066666667 Combine like terms: -1.507020607 + -1.066666667 = -2.573687274 x = -2.573687274 Simplifying x = -2.573687274

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.44035394, -2.573687274}

See similar equations:

| 40y+4=8 | | 2k^2+2k+1=0 | | 1/14x=448 | | 4k^2+4k+2=0 | | x+2x=x+18 | | -5w+7=11 | | -5+7=11 | | x+2+2x=6x-30 | | -5-7=11 | | 25y+9=5 | | m-n+y=6 | | m-n+y= | | Y=-2(x+8)(x+1) | | 12x^2+100=0 | | 12.50*12= | | 100-x=90+x | | log(4x-8)=7 | | 625+2(-9.8)(100-x)=v^2 | | 9x-7=10x-14 | | f(-10)=5(-10)+8 | | x-1=-20.25 | | f(5)=5(5)+8 | | (y+5)=48 | | P=5/6x | | 3(2y+1)-4(3y-2)=-7 | | 8x+3=-5x+12 | | 2y+5=3y-9 | | 120+8x=6(x+30) | | 2x-1/3-1=2 | | x+2*x=72 | | 5000*.9=x | | 2ln(x)-ln(4)=ln(x+15) |

Equations solver categories