5x(6x-1)=(10-7)(3x+1)

Simple and best practice solution for 5x(6x-1)=(10-7)(3x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(6x-1)=(10-7)(3x+1) equation:



5x(6x-1)=(10-7)(3x+1)
We move all terms to the left:
5x(6x-1)-((10-7)(3x+1))=0
We add all the numbers together, and all the variables
5x(6x-1)-(3(3x+1))=0
We multiply parentheses
30x^2-5x-(3(3x+1))=0
We calculate terms in parentheses: -(3(3x+1)), so:
3(3x+1)
We multiply parentheses
9x+3
Back to the equation:
-(9x+3)
We get rid of parentheses
30x^2-5x-9x-3=0
We add all the numbers together, and all the variables
30x^2-14x-3=0
a = 30; b = -14; c = -3;
Δ = b2-4ac
Δ = -142-4·30·(-3)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{139}}{2*30}=\frac{14-2\sqrt{139}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{139}}{2*30}=\frac{14+2\sqrt{139}}{60} $

See similar equations:

| (3x+4)2=9.5 | | (3x+4)2=9.2 | | 6r+2=3r | | 3÷4x-5÷2=3÷2 | | -6x+10–2x=-4x+7 | | 6^x^+9=36^x | | 8x-4=3×+6 | | 4x+6x=140 | | y-0.12y=96 | | -9x+16=2x | | 5y-7=3(60) | | -2.5(4x-4=-6 | | 17w=68 | | 16w=68 | | 11x-8=180 | | y-21=0 | | 3x+6x-3=60 | | 2(x+3)=3x-1) | | 6+(s+.3)=18 | | n+3/8=12 | | 3(x-5)-12=2x-6)+5 | | 15c-4=12c+15 | | m62+10m=0 | | -5(x-3)-2x=6-4(x-1) | | 26x+38=-22x+50 | | 3x=9= | | 6-2y=7y+13-9y | | 2y=4×+6 | | 3(2y+21)=21 | | 2x+6/3=x+4/5 | | 3/m-2+1/m-1=7/m^2-3m+2 | | 9c=-7 |

Equations solver categories