5x(83/4)=26/7

Simple and best practice solution for 5x(83/4)=26/7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(83/4)=26/7 equation:



5x(83/4)=26/7
We move all terms to the left:
5x(83/4)-(26/7)=0
We add all the numbers together, and all the variables
5x(+83/4)-(+26/7)=0
We multiply parentheses
415x^2-(+26/7)=0
We get rid of parentheses
415x^2-26/7=0
We multiply all the terms by the denominator
415x^2*7-26=0
Wy multiply elements
2905x^2-26=0
a = 2905; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·2905·(-26)
Δ = 302120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{302120}=\sqrt{4*75530}=\sqrt{4}*\sqrt{75530}=2\sqrt{75530}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{75530}}{2*2905}=\frac{0-2\sqrt{75530}}{5810} =-\frac{2\sqrt{75530}}{5810} =-\frac{\sqrt{75530}}{2905} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{75530}}{2*2905}=\frac{0+2\sqrt{75530}}{5810} =\frac{2\sqrt{75530}}{5810} =\frac{\sqrt{75530}}{2905} $

See similar equations:

| 0.75(4x+8)=0.5(2x-10) | | 3(-5x+8)=-96 | | 2(2)=4y=16 | | 5/2n-4=10/3n+3 | | 8(x-1)-8=3x+5(-3+x) | | 3/6=x/121 | | -118-432-715=x | | 2(-1)=4y=16 | | 18n=17 | | 1/3(x+6)=1/2( | | 3w-7=15 | | 15+k=35 | | 212/2x=3 | | 2(-2)=4y=16 | | -8u+4(u+2)=-12 | | 1−2n-3=-71 | | 3(-10+x)=-15 | | 2x-6x-8=-4x+3-8 | | -4(-9n-1)=7n | | 2.25x=6.5 | | 3x+25=150 | | 3x-52=2x+7 | | 9(x+2)=90. | | -7(9+6x)=105 | | 1.38x=2.54 | | (2x+3)(x-4)=-14 | | -3(4f+3)+4(6f+1)=4 | | -6+(1/4)x=-5 | | 7u+4=8 | | 6x2=x×2 | | 6(7+4x)=186 | | -6+(1/4)x-6=-5 |

Equations solver categories