If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(8x+20)=40
We move all terms to the left:
5x(8x+20)-(40)=0
We multiply parentheses
40x^2+100x-40=0
a = 40; b = 100; c = -40;
Δ = b2-4ac
Δ = 1002-4·40·(-40)
Δ = 16400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16400}=\sqrt{400*41}=\sqrt{400}*\sqrt{41}=20\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-20\sqrt{41}}{2*40}=\frac{-100-20\sqrt{41}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+20\sqrt{41}}{2*40}=\frac{-100+20\sqrt{41}}{80} $
| (15+x)/(33+x)=64/10000 | | 2x+5-45=30 | | x²+|x+1|=1-2x | | 15+x/(10+18+15+x)=64 | | 5(x-1)+3x=7 | | -(x-9)-4x=x+51 | | (x-9)-4x=x+51 | | X²-6x-1=0 | | 7e+2=65 | | x^2-1.2x=12.8 | | 3/4=x/288 | | 25r-10= | | (X+1)(X+2)=(x-5)(x-6) | | 3x+23=11x-44 | | x(x+3)=19.84 | | x(x+3=19.84 | | x/2+x/3=15/2 | | 8(x-4)=3(x+2) | | x+0.08x=5 | | x+15+3x+25=180 | | x+11=5x+25 | | x(3x-7)(2x+3)=4 | | 64+x/2=57 | | X=4/5x+8 | | 3(x-2)-2(x-3)=4 | | |7x−3|+9=24 | | /2x+1=5 | | a2+3a+2=0 | | 3c2+-17c+14=0 | | p/X/5p+5+3p=21 | | Y2+30a+125=0 | | 2x+7/5=32/5 |