5x(8x+3x)=2(55)

Simple and best practice solution for 5x(8x+3x)=2(55) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(8x+3x)=2(55) equation:



5x(8x+3x)=2(55)
We move all terms to the left:
5x(8x+3x)-(2(55))=0
determiningTheFunctionDomain 5x(8x+3x)-255=0
We add all the numbers together, and all the variables
5x(+11x)-255=0
We multiply parentheses
55x^2-255=0
a = 55; b = 0; c = -255;
Δ = b2-4ac
Δ = 02-4·55·(-255)
Δ = 56100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56100}=\sqrt{100*561}=\sqrt{100}*\sqrt{561}=10\sqrt{561}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{561}}{2*55}=\frac{0-10\sqrt{561}}{110} =-\frac{10\sqrt{561}}{110} =-\frac{\sqrt{561}}{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{561}}{2*55}=\frac{0+10\sqrt{561}}{110} =\frac{10\sqrt{561}}{110} =\frac{\sqrt{561}}{11} $

See similar equations:

| n+53+n9=319n= | | 6x+6x=18 | | 40(11+x)=1040 | | 5u-17=73 | | 5(b-3)=25b=8 | | 1/6c=10 | | 6(5b)=54 | | 3x+6=4x×5 | | 2r+3r=-4+6 | | 5x+5=7x-6÷2 | | 2r+3=-4+6 | | 5x-3(4x-7)=-11 | | 4√x+2+3=11 | | 4m^2-27m-49=0 | | 3v-11=14 | | 5u-9=51 | | 2(2-3x)-29+7(x+5)=-59 | | 4.8+3.6=2.3a-1.3a+3.9 | | w/8-3.1=15.9 | | 3/3=5x | | 9x+9=3x+18 | | 21=3x+15 | | 36=-2(4y+3) | | 3+x/6=1-3(4-7) | | 3(1+2y)=y+2(y+2y) | | -12=-2b | | 4x+3=5×-17 | | 2n-18=-20 | | 5=h-7 | | 3X2-2x-8=0 | | A(w)=w2+32w+55 | | 3e+4=12.5 |

Equations solver categories