5x(x+12)+2(-x+5)=-15

Simple and best practice solution for 5x(x+12)+2(-x+5)=-15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(x+12)+2(-x+5)=-15 equation:



5x(x+12)+2(-x+5)=-15
We move all terms to the left:
5x(x+12)+2(-x+5)-(-15)=0
We add all the numbers together, and all the variables
5x(x+12)+2(-1x+5)-(-15)=0
We add all the numbers together, and all the variables
5x(x+12)+2(-1x+5)+15=0
We multiply parentheses
5x^2+60x-2x+10+15=0
We add all the numbers together, and all the variables
5x^2+58x+25=0
a = 5; b = 58; c = +25;
Δ = b2-4ac
Δ = 582-4·5·25
Δ = 2864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2864}=\sqrt{16*179}=\sqrt{16}*\sqrt{179}=4\sqrt{179}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-4\sqrt{179}}{2*5}=\frac{-58-4\sqrt{179}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+4\sqrt{179}}{2*5}=\frac{-58+4\sqrt{179}}{10} $

See similar equations:

| 2x+10=2x^2+1 | | 7x-5=6x-11 | | 6x2=-25x-14 | | 13=3/8(4x+9) | | a(-6)=-5 | | 5|y+1|-25=0 | | 5(x+12)+2(-x+5)=-15 | | −3.2x−3.1=5.4x+5.5 | | 1/6x-1/8=11/12 | | 3x2-3x-126=0 | | 2x+2=12x—4 | | 112+2x=100 | | 2x2+10x+8=0 | | 12-w=2w | | (8-x)/3=21 | | 6x2-42x+72=0 | | (4y+6)=36 | | (8)(2x+3)^3=0 | | 2x+35=88 | | f25=27 | | 14x-15=180 | | 3x+4(-3x-1)=-49 | | 8x+7+2x+6=5x+8 | | x2-x-50=0 | | 3x+4(-3x-1)=49 | | x²+5x+36=0 | | g-84=16 | | -2.5a=4.67=2.881 | | g-26=-99 | | 6x-3*(x+5)=3 | | 2x+9=2x^2+1 | | 2x+9=2x^2=1 |

Equations solver categories