If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(x+54)=90
We move all terms to the left:
5x(x+54)-(90)=0
We multiply parentheses
5x^2+270x-90=0
a = 5; b = 270; c = -90;
Δ = b2-4ac
Δ = 2702-4·5·(-90)
Δ = 74700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{74700}=\sqrt{900*83}=\sqrt{900}*\sqrt{83}=30\sqrt{83}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(270)-30\sqrt{83}}{2*5}=\frac{-270-30\sqrt{83}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(270)+30\sqrt{83}}{2*5}=\frac{-270+30\sqrt{83}}{10} $
| -45=-12-y | | 11x+99=180 | | 4(7+5x)=228 | | -7-6=7x+8-6x | | 3x+15=-2+2 | | -5(9-4x)=195 | | 32k-32=-5k-30 | | (5+x)×3=300 | | -5a=33 | | (10+x)×3=300 | | 50+0,6x=8x | | 2x+156=4+192 | | 4.5=10.6^t | | 9x-8x+3=11-18 | | k2+k=24 | | 4(2+2x)=48 | | 32=16^(x-3) | | 2n+18n+9=20n+9 | | 32=(16^x+3) | | 5(-6x+1)=5 | | 4x+8=4x+13 | | -2-88=-6(8+8v) | | 8k+11-5=-7+8k | | 13b-6=7+13b | | -4(10+3x)=-172 | | 6b+4=-3+6b | | 60+.7x=40+.8x | | -9+10v=10v+2 | | d-2d=-d | | -8(x-5)+5=85 | | 6r=36-28r | | 3k−(k+4)=4(k−2)−6 |