5x(x-1)=5x*2-(8-3x)

Simple and best practice solution for 5x(x-1)=5x*2-(8-3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(x-1)=5x*2-(8-3x) equation:



5x(x-1)=5x*2-(8-3x)
We move all terms to the left:
5x(x-1)-(5x*2-(8-3x))=0
We add all the numbers together, and all the variables
5x(x-1)-(5x*2-(-3x+8))=0
We multiply parentheses
5x^2-5x-(5x*2-(-3x+8))=0
We calculate terms in parentheses: -(5x*2-(-3x+8)), so:
5x*2-(-3x+8)
Wy multiply elements
10x-(-3x+8)
We get rid of parentheses
10x+3x-8
We add all the numbers together, and all the variables
13x-8
Back to the equation:
-(13x-8)
We get rid of parentheses
5x^2-5x-13x+8=0
We add all the numbers together, and all the variables
5x^2-18x+8=0
a = 5; b = -18; c = +8;
Δ = b2-4ac
Δ = -182-4·5·8
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{41}}{2*5}=\frac{18-2\sqrt{41}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{41}}{2*5}=\frac{18+2\sqrt{41}}{10} $

See similar equations:

| 3/4=3/*x-2/5 | | 5+9k=-13 | | 12+7c=-16 | | -x2+18X+19=0 | | 5-2x=-x | | 3(4-2x)=6-8x | | 7k+5=19 | | 2^(x-4)=6 | | 2^-x+3(2x)=0 | | -6-(-3x)=6x | | 1/3x-1/4x=7 | | 6-(-3x)=6x | | 60000=x/0.18 | | 1/2x-1/4=x/3+1/6 | | F(20)=7•5h | | n/4+7=-1 | | 2x+3=4(1=x)+5 | | -5m=50=50 | | 5=1717+2+6k+-9k=0 | | 3(5k+8=9 | | 72+3q=81 | | x3-6x=72 | | w/3+5=1 | | 10+b/5=-1 | | y+9-9y/3=19-9y/2 | | 5-y/3=10 | | 12=x/4+10 | | (x^2+5)^0.5+2x=7 | | x-85+641=65 | | 11y=6y+105 | | 7y=y=30 | | 8g-5=5g+40 |

Equations solver categories