5x(x-6)=(4x-5)(x-6)

Simple and best practice solution for 5x(x-6)=(4x-5)(x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(x-6)=(4x-5)(x-6) equation:



5x(x-6)=(4x-5)(x-6)
We move all terms to the left:
5x(x-6)-((4x-5)(x-6))=0
We multiply parentheses
5x^2-30x-((4x-5)(x-6))=0
We multiply parentheses ..
5x^2-((+4x^2-24x-5x+30))-30x=0
We calculate terms in parentheses: -((+4x^2-24x-5x+30)), so:
(+4x^2-24x-5x+30)
We get rid of parentheses
4x^2-24x-5x+30
We add all the numbers together, and all the variables
4x^2-29x+30
Back to the equation:
-(4x^2-29x+30)
We add all the numbers together, and all the variables
5x^2-30x-(4x^2-29x+30)=0
We get rid of parentheses
5x^2-4x^2-30x+29x-30=0
We add all the numbers together, and all the variables
x^2-1x-30=0
a = 1; b = -1; c = -30;
Δ = b2-4ac
Δ = -12-4·1·(-30)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-11}{2*1}=\frac{-10}{2} =-5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+11}{2*1}=\frac{12}{2} =6 $

See similar equations:

| 4(8x-3)=148 | | d9=10 | | j/3+5=8 | | -2(3-3x)=-5x-28 | | 11x=231 | | 3x/x^2-4+1/x-2=2/x+2 | | x2+10x=24 | | 4(y-3/4)=1 | | d4=11 | | 4y=280 | | 4x+40=12x+32 | | -18y(y+1=0 | | 1/3(y+6)=6 | | r+10=4 | | 5x+13=x+23 | | 7n=210 | | -39-3m=-3(1+5m) | | -5(h+12)-(4h-2)=h-8 | | d3=10 | | 2x-1/5=03 | | t/3+5=6 | | 1/3+4/x-2=6 | | p+16=84 | | .5(y+4)=5 | | x+97+x+97=180 | | 10y-14=46 | | 1.65=33.10+0.39t | | 1(y+2)=10 | | 9(2x-1)=-4(x-2) | | 0.39t=33.10+1.65 | | 2x+3+3+3x=x+11 | | .2(.9+y)=8.18 |

Equations solver categories