5x+(2x-(3x-20))=x(400-2x)

Simple and best practice solution for 5x+(2x-(3x-20))=x(400-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+(2x-(3x-20))=x(400-2x) equation:



5x+(2x-(3x-20))=x(400-2x)
We move all terms to the left:
5x+(2x-(3x-20))-(x(400-2x))=0
We add all the numbers together, and all the variables
5x+(2x-(3x-20))-(x(-2x+400))=0
We calculate terms in parentheses: +(2x-(3x-20)), so:
2x-(3x-20)
We get rid of parentheses
2x-3x+20
We add all the numbers together, and all the variables
-1x+20
Back to the equation:
+(-1x+20)
We calculate terms in parentheses: -(x(-2x+400)), so:
x(-2x+400)
We multiply parentheses
-2x^2+400x
Back to the equation:
-(-2x^2+400x)
We get rid of parentheses
2x^2-400x+5x-1x+20=0
We add all the numbers together, and all the variables
2x^2-396x+20=0
a = 2; b = -396; c = +20;
Δ = b2-4ac
Δ = -3962-4·2·20
Δ = 156656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156656}=\sqrt{16*9791}=\sqrt{16}*\sqrt{9791}=4\sqrt{9791}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-396)-4\sqrt{9791}}{2*2}=\frac{396-4\sqrt{9791}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-396)+4\sqrt{9791}}{2*2}=\frac{396+4\sqrt{9791}}{4} $

See similar equations:

| (3p-2)/(4)=(4p+2)/(3) | | b2√2b−4=0 | | 4+2p=10*(3/5p-2) | | X-y=172X+3y=64 | | 3+4x=-6x+13 | | 3x-10=24+x | | 7x+1=-5x+11 | | 19+8x=-5-33x | | -x-15=2x+6 | | 23=14+4x | | 25x^2-89=0 | | 60=9x-3+7x | | 3x+x-1=19 | | 3-y=4y-9 | | 8x-15=32x | | 170+8x=93+15x | | 6x+12=-6x-35 | | (-2)(-3)(x)=-18 | | (-9)(x)=45 | | (79-x)x=6241 | | 9y+28=16y | | y=25×+15 | | X^-15x+14=0 | | 7x2+4x−(2x2−2x)=0 | | (x+15)°=50°+(x+5)°=100°+(10x-20)°=30° | | n+9=58 | | 10/15=9/l | | 15/10=9/l | | (x+15)°=50°(x+5)°=100°(10x-20)°=30° | | 85/20=k/52 | | 20/85=52/k | | S=-1^p=-1 |

Equations solver categories