5x+(2x-3)+(x-1)5x=76

Simple and best practice solution for 5x+(2x-3)+(x-1)5x=76 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+(2x-3)+(x-1)5x=76 equation:



5x+(2x-3)+(x-1)5x=76
We move all terms to the left:
5x+(2x-3)+(x-1)5x-(76)=0
We multiply parentheses
5x^2+5x+(2x-3)-5x-76=0
We get rid of parentheses
5x^2+5x+2x-5x-3-76=0
We add all the numbers together, and all the variables
5x^2+2x-79=0
a = 5; b = 2; c = -79;
Δ = b2-4ac
Δ = 22-4·5·(-79)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-12\sqrt{11}}{2*5}=\frac{-2-12\sqrt{11}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+12\sqrt{11}}{2*5}=\frac{-2+12\sqrt{11}}{10} $

See similar equations:

| 25=q+29 | | -8x-15x2=0 | | .008y+3=3.8 | | -17+9f=17+7f | | N-2+5=-9-n | | -4p-7+4p=9+2p | | 7+k+3k=1+6k | | -3m-7+6m=2+4m | | 12k-6=2(4k+3) | | -5j=-4j+9 | | -4a-2(a-1)=-4a+8 | | 6s-10=4+8s | | 8+2x/3=20 | | 161=3x+4x | | -440+-9x+x3=0 | | -5x^2-20x+25=0 | | 6-2p=-p | | 1/2m+3=-15 | | -8x-16=-8x-8x | | 3-9x=31-(9x+28) | | 1+7d=8d+10 | | (x+3)(x)(x-3)=440 | | 126+3y=2(4y+8)+2(4y+3) | | X^4-12x^2-16x-48=0 | | 1/2x+4=-14 | | -10+7s=8s | | 5x^2=25-20x | | 2p-4=18 | | 5q=-10+4q | | 3x+4x=114 | | 4p-6=7p | | 2(x-2)+x(x+3)=-x+3 |

Equations solver categories