5x+(4x)(2)=175

Simple and best practice solution for 5x+(4x)(2)=175 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+(4x)(2)=175 equation:



5x+(4x)(2)=175
We move all terms to the left:
5x+(4x)(2)-(175)=0
We add all the numbers together, and all the variables
4x^2+5x-175=0
a = 4; b = 5; c = -175;
Δ = b2-4ac
Δ = 52-4·4·(-175)
Δ = 2825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2825}=\sqrt{25*113}=\sqrt{25}*\sqrt{113}=5\sqrt{113}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{113}}{2*4}=\frac{-5-5\sqrt{113}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{113}}{2*4}=\frac{-5+5\sqrt{113}}{8} $

See similar equations:

| 5b=210 | | 10+b/6+b=b12 | | x+91+49=180 | | 3k-12=1+7k-5 | | 5g=345 | | -5x+7x=-3+3x | | -5x+7=-3+3x | | -5-5=-5x-5 | | 9=m+17/2 | | x-5=-5-5 | | y=5(-4)-17 | | -9-3x=x+7 | | 4x-12=9x-42 | | -7x-6x=10-3x | | v-6+2v=8-4v | | (2/5)x=1 | | 7x+32=9x+24 | | -x/12=-14 | | -18=7w÷9-10w | | 4n+8/1/5=17 | | 5+58=7x | | -9w-2w-18=36 | | 76.5=p-150 | | –21=|–7u| | | 1.6(1+.5n)-3.2=1.1(n-6.8) | | -6x+40=-14 | | r6.2=15 | | 5x-192=0 | | 3+2(2x−7)+x=−21 | | (-11b)+7=40 | | 2.t-40=3 | | 4(3-8k)=44 |

Equations solver categories