5x+20/(1x-9)=10

Simple and best practice solution for 5x+20/(1x-9)=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+20/(1x-9)=10 equation:



5x+20/(1x-9)=10
We move all terms to the left:
5x+20/(1x-9)-(10)=0
Domain of the equation: (1x-9)!=0
We move all terms containing x to the left, all other terms to the right
x!=9
x∈R
We add all the numbers together, and all the variables
5x+20/(x-9)-10=0
We multiply all the terms by the denominator
5x*(x-9)-10*(x-9)+20=0
We multiply parentheses
5x^2-45x-10x+90+20=0
We add all the numbers together, and all the variables
5x^2-55x+110=0
a = 5; b = -55; c = +110;
Δ = b2-4ac
Δ = -552-4·5·110
Δ = 825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{825}=\sqrt{25*33}=\sqrt{25}*\sqrt{33}=5\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-5\sqrt{33}}{2*5}=\frac{55-5\sqrt{33}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+5\sqrt{33}}{2*5}=\frac{55+5\sqrt{33}}{10} $

See similar equations:

| 6(r)=25−3r | | 23n-55=3n-741 | | 2e+5=0 | | |6x+7|+6=73 | | 3h-2=7 | | 6+2y=-1y | | 1-k+5k=10+k | | F(4)=2(x^2)-8x+12 | | n/3=22 | | -6(12-x)=60 | | 1-6x=-9x-20 | | 4+1/3x=2x-11 | | 4+1/3x=2x-12 | | 2x-4(x-2)=-9+3x+2 | | 15/7=v/9 | | -3w+-w=12 | | 5=0.4x/x | | 5+4n=n-10 | | 7=−11+3(b+5)  | | x+.09x+150=16009.50 | | 9x²-7x-2=0 | | 13m=12–m1/3m=12-m | | 2x+5x+(5x+40)=180 | | 5/2-x/4=1/8 | | 22–-4y=70 | | 9a+9=-3+6a | | j/4-3=5 | | 26y+26=3y+95= | | 2(6-5x)=-16 | | 12-2t=2 | | 5x–5+4x=22 | | 3n^2-4n-3=0 |

Equations solver categories