5x-1x(x-18)=6-2(x+15)

Simple and best practice solution for 5x-1x(x-18)=6-2(x+15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-1x(x-18)=6-2(x+15) equation:



5x-1x(x-18)=6-2(x+15)
We move all terms to the left:
5x-1x(x-18)-(6-2(x+15))=0
We multiply parentheses
-x^2+5x+18x-(6-2(x+15))=0
We calculate terms in parentheses: -(6-2(x+15)), so:
6-2(x+15)
determiningTheFunctionDomain -2(x+15)+6
We multiply parentheses
-2x-30+6
We add all the numbers together, and all the variables
-2x-24
Back to the equation:
-(-2x-24)
We add all the numbers together, and all the variables
-1x^2+23x-(-2x-24)=0
We get rid of parentheses
-1x^2+23x+2x+24=0
We add all the numbers together, and all the variables
-1x^2+25x+24=0
a = -1; b = 25; c = +24;
Δ = b2-4ac
Δ = 252-4·(-1)·24
Δ = 721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{721}}{2*-1}=\frac{-25-\sqrt{721}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{721}}{2*-1}=\frac{-25+\sqrt{721}}{-2} $

See similar equations:

| 6.6b=30 | | 8÷5=48÷x | | 54=(x+5)xX | | 72-90-1/8b=7/8b | | 4n+23=2n+13 | | 5=z⌥-4-3 | | 8x-(5-4)=49/7 | | 7x+3(5–3x)=5 | | 3d=5(2-3d) | | (x-3)2+7=70 | | y/7-5=86-36 | | 20+n=22 | | 24+2.5x=12x-3 | | 4a-9=2(a+1)+12a+2 | | 20/24=m/6 | | A-5-4a=13 | | 3x​^2​+13x=10 | | 3x​2​+13x=10 | | 2x(×-3)=80 | | 1179=11t+200 | | 7x-15=-29 | | y=60-60-y | | 9b-6=12 | | 3n+22=4n+25 | | 4(5x+5)=5(2x+4) | | Y=-2x+-7 | | 5(2x/5)=5(12/8) | | 4/3t+(8-5)=7 | | 1.05=0.5x | | c/14=56 | | –29j=899 | | 19=0.5t+2 |

Equations solver categories