5x-2+3x=3(x+4)5x-10

Simple and best practice solution for 5x-2+3x=3(x+4)5x-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-2+3x=3(x+4)5x-10 equation:



5x-2+3x=3(x+4)5x-10
We move all terms to the left:
5x-2+3x-(3(x+4)5x-10)=0
We add all the numbers together, and all the variables
8x-(3(x+4)5x-10)-2=0
We calculate terms in parentheses: -(3(x+4)5x-10), so:
3(x+4)5x-10
We multiply parentheses
15x^2+60x-10
Back to the equation:
-(15x^2+60x-10)
We get rid of parentheses
-15x^2+8x-60x+10-2=0
We add all the numbers together, and all the variables
-15x^2-52x+8=0
a = -15; b = -52; c = +8;
Δ = b2-4ac
Δ = -522-4·(-15)·8
Δ = 3184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3184}=\sqrt{16*199}=\sqrt{16}*\sqrt{199}=4\sqrt{199}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-4\sqrt{199}}{2*-15}=\frac{52-4\sqrt{199}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+4\sqrt{199}}{2*-15}=\frac{52+4\sqrt{199}}{-30} $

See similar equations:

| 0.6x+5=-0.3x+14 | | -2=(4+2x)/5 | | (x+2)/(-2)=3x-3 | | X2+4x+48=0 | | 3/4x+1/2=-7 | | 130+35+2x=120+60+15+20+x | | 3n-6=-8(6=5n) | | (3x+1)/5=x-1 | | (4x-3x+4-2)/3=2x-3+2 | | 54/x+12=17 | | 3y+15=2y-4 | | 3x2-2x-40=0 | | -19=2/10x-8 | | (x-2)/6=(x-1)/9 | | 5(x-2)-6(x-2)=2(x-3)-3 | | 7w+50=6 | | 10x+46=4x+4 | | 2a+1a=10 | | 5x-7=35x−7=3 | | -7(x+1)-16=28+5 | | 2x=3x-108 | | t-+1=-3 | | 4y4=y | | 2+2(x+1)=3x-(2-x) | | 12=5c-12+3c | | 4=t.2.5 | | 78=3/2(100-x) | | x+5(2-x)=8-2(3-x) | | Y=3+2.5(x) | | 5x+16=1-2x | | 1-3(x+2)=3x-2(1+x) | | 9x=7(x+8)+60 |

Equations solver categories