5x-2/x+1=4/x+1

Simple and best practice solution for 5x-2/x+1=4/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-2/x+1=4/x+1 equation:



5x-2/x+1=4/x+1
We move all terms to the left:
5x-2/x+1-(4/x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We get rid of parentheses
5x-2/x-4/x-1+1=0
We multiply all the terms by the denominator
5x*x-1*x+1*x-2-4=0
We add all the numbers together, and all the variables
5x*x-6=0
Wy multiply elements
5x^2-6=0
a = 5; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·5·(-6)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*5}=\frac{0-2\sqrt{30}}{10} =-\frac{2\sqrt{30}}{10} =-\frac{\sqrt{30}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*5}=\frac{0+2\sqrt{30}}{10} =\frac{2\sqrt{30}}{10} =\frac{\sqrt{30}}{5} $

See similar equations:

| 24x²-38x=77 | | 2k+1=k+5-3k | | 5x+11x+1°15+11x+1°15=180 | | (6x+7)(4x-11)=0 | | 60-30x+20=5x-60 | | 245=5y-25 | | a²+8a+16=0 | | 4^(x2+2)-0.2(x2+2)+8=0 | | 4^(x²+²)-0.2(x²+²)+8=0 | | z-8/5+z=-6/7 | | X+6=x+20 | | X²+120x=640 | | X²+120x-640=0 | | 10=66(8x) | | 9-8n=6n-47 | | f(-3)=12-7 | | 7m-(1+4m)=5 | | (2x-3)-(5x-2)/6x+11=2/17 | | (x+36)+x=180 | | 3x+2/3-2x-3/4=x-1/2 | | t+4/7=7 | | p+15=19 | | 5x²-125=0 | | x²-2x=-3 | | 2x4−10x2+17=0 | | 49-3b=4b | | 49-2b=4b | | 16=-9v-6=7v | | 4x-3=32x+7 | | 2×(4x+5)=-3 | | 40x+60=50x+100 | | 9x+25+4x=11x+21 |

Equations solver categories