5x-3=(3x+2)(x-1)

Simple and best practice solution for 5x-3=(3x+2)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-3=(3x+2)(x-1) equation:



5x-3=(3x+2)(x-1)
We move all terms to the left:
5x-3-((3x+2)(x-1))=0
We multiply parentheses ..
-((+3x^2-3x+2x-2))+5x-3=0
We calculate terms in parentheses: -((+3x^2-3x+2x-2)), so:
(+3x^2-3x+2x-2)
We get rid of parentheses
3x^2-3x+2x-2
We add all the numbers together, and all the variables
3x^2-1x-2
Back to the equation:
-(3x^2-1x-2)
We add all the numbers together, and all the variables
5x-(3x^2-1x-2)-3=0
We get rid of parentheses
-3x^2+5x+1x+2-3=0
We add all the numbers together, and all the variables
-3x^2+6x-1=0
a = -3; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·(-3)·(-1)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{6}}{2*-3}=\frac{-6-2\sqrt{6}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{6}}{2*-3}=\frac{-6+2\sqrt{6}}{-6} $

See similar equations:

| 5x-3=(3x+2)(3x-1) | | 3x-4+9x+4+6x-31=180 | | 2z(3z+17)=12 | | 7/8x-5/4=3 | | 2d+3(d-1)=7 | | w-88/8=1 | | 2a-6=3a-15 | | 50=-3t | | 5y+8=35 | | 1/6(12z-18)=2z-3= | | 1/2(12z-18)=2z-3= | | 6r+12r=108 | | 0.75-x=1/2 | | -5x-12x=-102 | | 6x=(x+.4)4.5 | | w÷5+17=42 | | 6x=(x+.4)x4.5 | | 132=7y-19+5y | | 9+12p=81 | | 6.5+3/8x=13/1/4 | | 4g+g-2g+3=54 | | 52x-2=10 | | (4a-8)^2=-64 | | -1/4x=2/3x+22 | | 91=b+6/2 | | -18=6(1-4w) | | -106=-2(6m+5) | | 2(-2m+5)=38 | | 15x=2500 | | 31=8q-9 | | -5(6y-1)=-85 | | 1/2(2x-12)=3x |

Equations solver categories