If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x-4=(1/5)(5+20x)
We move all terms to the left:
5x-4-((1/5)(5+20x))=0
Domain of the equation: 5)(5+20x))!=0We add all the numbers together, and all the variables
x∈R
5x-((+1/5)(20x+5))-4=0
We multiply parentheses ..
-((+20x^2+1/5*5))+5x-4=0
We multiply all the terms by the denominator
-((+20x^2+1+5x*5*5))-4*5*5))=0
We calculate terms in parentheses: -((+20x^2+1+5x*5*5)), so:We add all the numbers together, and all the variables
(+20x^2+1+5x*5*5)
We get rid of parentheses
20x^2+5x*5*5+1
Wy multiply elements
20x^2+125x*5+1
Wy multiply elements
20x^2+625x+1
Back to the equation:
-(20x^2+625x+1)
-(20x^2+625x+1)=0
We get rid of parentheses
-20x^2-625x-1=0
a = -20; b = -625; c = -1;
Δ = b2-4ac
Δ = -6252-4·(-20)·(-1)
Δ = 390545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-625)-\sqrt{390545}}{2*-20}=\frac{625-\sqrt{390545}}{-40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-625)+\sqrt{390545}}{2*-20}=\frac{625+\sqrt{390545}}{-40} $
| 29x-13=14x-13 | | (11x-4)/x=3 | | 90=2x+x+20+50 | | 19x^2+25x=0 | | 180=2x+20+x+50 | | -1-3(1+6x)=-112 | | (x+1)/(x-1)=((-3)/(x+3))+((8)/(x²+2x-3)) | | 4.5x=7020 | | 180=x+50 | | 90=x+50 | | 2.75d=77 | | 180=2x+20+x+50+90 | | 180=3x+160 | | 90=3x+70 | | 4(2=x)+1=2x+2-5(1-4x) | | 20+5x=32 | | 180=46+2x-4 | | X-1+3x=x+7 | | 3(2x-1)+7=5x-3-2(2-4x) | | /5x+4-(2x-63)=12x+44 | | 5-2z=3z-7z+25 | | 4y-8+3=32 | | 1/2(x+1)^2=2(x+4)^2 | | -4p+2p=-16 | | 3x-1-x=3 | | x^2+((-12/5)x)^2)=676 | | 4x/7=2/84 | | (3x-1)/5-x/7=3 | | 5x+4(8-2x/3)=13 | | 1=2x-5+4x | | 18+5x=39 | | x/4x/7=2/84 |