5x-x(x-18)=6-2(x+15)

Simple and best practice solution for 5x-x(x-18)=6-2(x+15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-x(x-18)=6-2(x+15) equation:



5x-x(x-18)=6-2(x+15)
We move all terms to the left:
5x-x(x-18)-(6-2(x+15))=0
We multiply parentheses
-x^2+5x+18x-(6-2(x+15))=0
We calculate terms in parentheses: -(6-2(x+15)), so:
6-2(x+15)
determiningTheFunctionDomain -2(x+15)+6
We multiply parentheses
-2x-30+6
We add all the numbers together, and all the variables
-2x-24
Back to the equation:
-(-2x-24)
We add all the numbers together, and all the variables
-1x^2+23x-(-2x-24)=0
We get rid of parentheses
-1x^2+23x+2x+24=0
We add all the numbers together, and all the variables
-1x^2+25x+24=0
a = -1; b = 25; c = +24;
Δ = b2-4ac
Δ = 252-4·(-1)·24
Δ = 721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{721}}{2*-1}=\frac{-25-\sqrt{721}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{721}}{2*-1}=\frac{-25+\sqrt{721}}{-2} $

See similar equations:

| 5x-34=2 | | 6x²-45=441 | | (6n+6)=(7n-1) | | –5(–a–1)=3a–7 | | -3(r+4)=-36 | | X^2-40x+8=4 | | 7x=6x-3/2(9) | | 7x=6x-3/2(2) | | -3(r+4)=-36 | | 212q+1=(1/2q+1)=–3(2q–1)+4(2q+1) | | 10=(2)(7)x+4 | | 3z+1=80 | | 7n+14=70 | | 10={2}{7}x+4 | | 3x+5=2x-2​ | | (4x+10)/2=-3x | | 7+13=17+m | | 4v+13=33 | | x*x=17.7 | | 2n–3n=n+8 | | 7w-(3w+4)=-2(2w-1)+10 | | H(3)=5x-3 | | 18=10+m+4 | | m-73=100 | | 4y−5=4+7 | | 7+-8a+a^2=0 | | 2*x*x*x-x*x*x*x*x*x-1=0 | | 12.21/m=6.6/8.8 | | 73-m=100 | | 42(p-7)=6 | | 9x-24=34 | | 7/x=5/20 |

Equations solver categories