If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x/5(2-3x)=1/25
We move all terms to the left:
5x/5(2-3x)-(1/25)=0
Domain of the equation: 5(2-3x)!=0We add all the numbers together, and all the variables
x∈R
5x/5(-3x+2)-(+1/25)=0
We get rid of parentheses
5x/5(-3x+2)-1/25=0
We calculate fractions
125x/(-375x+250)+(-5x(-)/(-375x+250)=0
We calculate terms in parentheses: +(-5x(-)/(-375x+250), so:We get rid of parentheses
-5x(-)/(-375x+250
We add all the numbers together, and all the variables
-5x0/(-375x+250
We multiply all the terms by the denominator
-5x0
We add all the numbers together, and all the variables
-5x
Back to the equation:
+(-5x)
125x/(-375x+250)-5x=0
We multiply all the terms by the denominator
125x-5x*(-375x+250)=0
We multiply parentheses
1875x^2+125x-1250x=0
We add all the numbers together, and all the variables
1875x^2-1125x=0
a = 1875; b = -1125; c = 0;
Δ = b2-4ac
Δ = -11252-4·1875·0
Δ = 1265625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1265625}=1125$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1125)-1125}{2*1875}=\frac{0}{3750} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1125)+1125}{2*1875}=\frac{2250}{3750} =3/5 $
| 1/3x^2-5x+22=0 | | 2x-4=158 | | 160x=20x | | 5x/52-3x=1/25 | | 11x-4=16x-4 | | 49x^2-36/x=0 | | y^2+36y+90=0 | | 22(4-n)+8n=46 | | x-0.08x=126.64 | | .5x+14=x | | (x+2/5)^2=7/25 | | 20=-4-5b+2b | | -5+7y=3y+9 | | 65=4/3c-7 | | 1m=-(4+1m)+2 | | 90+(-6y)=-210+12y | | 8/9=11/x+12 | | m=-(4+1)+2 | | -2|x-3|-5=7 | | 11/3a=2/9 | | z=20.71 | | p-1/4p=750,000 | | -3(2x-4)=8 | | -1+3x=2(4+3x) | | 5=15-6/5x | | 6(6-4y)=12y | | 3=13-6/5x | | f(3)=12/3 | | 2x+3=x12 | | X+4x=576 | | 2+1.25f=19-2.75f | | 12-8x-9=8x+17-4x |