If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+10x+2=0.
a = 5; b = 10; c = +2;
Δ = b2-4ac
Δ = 102-4·5·2
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{15}}{2*5}=\frac{-10-2\sqrt{15}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{15}}{2*5}=\frac{-10+2\sqrt{15}}{10} $
| 7x•12=9x+22 | | x²-8x+16=(x-4)² | | x²+2x-15=(x+3)(x-5) | | 0=6/7x+6 | | 2x+4+70=180° | | 0.4x+5=10 | | 4x-10=3x+8=13 | | -3/5y=2/3=-10/9 | | x12.3=7.05 | | 2z/4=15-2z | | -33=3(x9) | | 10^(2x+1)=1000 | | 4x+-6=3x+2=x+12 | | 3h-6/6=8(3h-4)/4 | | 5-10t=-35 | | 2e+6=9 | | -2z=-11 | | 12x+2=-9 | | 5(8x-10)=15(6x+10) | | 2x-4/5=13 | | 5y×7=9y×4 | | n/8-3=+-11 | | 3(x-1)-4x=5(x-1) | | 3/x-4=5/2x | | X/4+3/2=x/2+3/4 | | -4(6y-2)-y=-3(y-2) | | x+.10x=6900 | | -3(6y-8)-y=-2(y-2) | | 6x+13=8x+9 | | 6x-3x+2=x-8+10 | | -2-5x=3-4x | | (-1.7p)-(-0.9p)=0.8 |