If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+10x+4=0
a = 5; b = 10; c = +4;
Δ = b2-4ac
Δ = 102-4·5·4
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{5}}{2*5}=\frac{-10-2\sqrt{5}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{5}}{2*5}=\frac{-10+2\sqrt{5}}{10} $
| 3a(4+a)=12a^2 | | 4(x-9)=-30 | | 6x-7=5x=1 | | 0.7u+1.7u-8=0 | | 15,000=750x | | s=-6+2s | | -9-2x=9+x | | -5-4x+9=7+9 | | 3/7x+1/3=1/3x+1 | | 9x-10+15x-3=7+8x+6x | | 7x+2+2(46-x)=134 | | 4-7d=-6d | | 3a(4+a)=3a(4+a) | | -4(b+5)=2(1-4b)-2 | | 300-40x=100 | | 30+100+x=360 | | 7(x+3)-7=4x+3(5+x) | | 1/4t+8=2 | | 3x-(5x+2)=8x-22 | | X+x+7+x+8=42 | | 9x-5.82=-5.19 | | 5x+5+7x-13=180 | | x+3+2x-9=4x-7 | | (4w-36)(w^2-2w-3)=0 | | 4(a+3)=4a-7 | | -4(7x+2)=14-28x+8 | | -3(2p+1)+7=5 | | 8x+4(x+2)=44 | | 5x+5-4x=8+2x-6 | | 3x+5=-5x+9 | | 4x-7+2x+9=x+3 | | 2x-6+7=4x+4-2 |