If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+117x-72=0
a = 5; b = 117; c = -72;
Δ = b2-4ac
Δ = 1172-4·5·(-72)
Δ = 15129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15129}=123$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(117)-123}{2*5}=\frac{-240}{10} =-24 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(117)+123}{2*5}=\frac{6}{10} =3/5 $
| 8(2–x)2=2(8–x)2 | | 13=12y-5(2y-7) | | -3(9+5d)=-21 | | X+2y=-40 | | 1/6(n-1)=2/3(n+2)-1/3n | | 4n+5n+15=5n+5 | | 4/x=14/70 | | 7/6=3/v | | 2/10=v/4 | | 3(n+2)=-18 | | 1800=3x+2x+x | | 3-(2-2x)=3x+1 | | 7x+2(4-2x)=-25+6x | | 3x-20+x+70=180 | | 10/n=2/8 | | (x)(8x)÷2=64 | | 72/3=x/7 | | 19x9=171 | | 2/8=k/2 | | 20=15-1/3x | | (x-3)/3=(x+7)/7 | | (x+4)^4−9(x+4)^2=0 | | 4.1x^2+2.2x-2.1=0 | | (x-1)/(x^2+5x+11)=0 | | 4.1x^2+2.2x-8.9=0 | | 2x+2(2x-3)=18 | | 16=p/19 | | 4x-5=2x-12 | | 8/6=n/9 | | 116+10x=x^2 | | 4.3^2+7.4x-8.9=0 | | 6/18=x/12 |