If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+11x-198=0
a = 5; b = 11; c = -198;
Δ = b2-4ac
Δ = 112-4·5·(-198)
Δ = 4081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{4081}}{2*5}=\frac{-11-\sqrt{4081}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{4081}}{2*5}=\frac{-11+\sqrt{4081}}{10} $
| 4x-17=-2+25 | | 12-4m=20 | | 9x=-4x+5 | | 0.45x+1.2=5 | | 193=5x+2+7x+11 | | -5=x-(-28- | | 8b+87=180 | | 4x+5-7x=6x-13 | | 6w+39=(w+6) | | -3x+8=-1x | | -36=-8v+6(v-3) | | 6(2x-5)=8x+18 | | 6x-108=180 | | -7(w+6)=-2w-37 | | 1/2a=4 | | 4x+28°+x+19°+3x+13°=180 | | 4s=180 | | -8x+3-7x=15 | | -x-24+4x=15 | | 9.50+3.50x=35 | | 8w/5=-3/2 | | 15y=240 | | 5(u-6)-8=33 | | 3x+(x+38)=180 | | 9x=7(x=2) | | 15^3n+2=13 | | -10(x+2)=-60 | | 1/5(x)+1/2=21/10 | | 10v=v+72 | | -2.3+x÷4=-6.8 | | 22=4(x+7)-6x | | 1=2x^2-3 |