If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+11x-7=0
a = 5; b = 11; c = -7;
Δ = b2-4ac
Δ = 112-4·5·(-7)
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-3\sqrt{29}}{2*5}=\frac{-11-3\sqrt{29}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+3\sqrt{29}}{2*5}=\frac{-11+3\sqrt{29}}{10} $
| 17x2-12x+15=0 | | 19x2-13x+14=0 | | 18x2+2x-3=0 | | 5x2+16x-17=0 | | 17x2-x-6=0 | | 7x2+5x-11=0 | | 9x2+5x+18=0 | | 14x2-19x-14=0 | | 18x2-14x+16=0 | | 6x2-13x+12=0 | | 20x2-12x-13=0 | | -x+14=59 | | 104=5-x/3 | | 6x2+11x-12=0 | | 17x2+18x-18=0 | | x2+18x+20=0 | | 7x2+16x-20=0 | | 16x2+15x+5=0 | | 13x2-11x-2=0 | | 20x2+5x-6=0 | | 8x2-13x+6=0 | | 16x2+11x-11=0 | | 13x2-18x-15=0 | | 11x2+18x-17=0 | | 11x2+9x+17=0 | | 4x2-x-13=0 | | 9x2+x+13=0 | | 19x2+9x-3=0 | | 11x2+4x-10=0 | | 13x2-13x-15=0 | | 3x2+5x-4=0 | | 7x2-4x-5=0 |